
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Implementing Minimax Search with Alpha-Beta

Pruning in Blokus Duo

Timothy Niels Ruslim - 10123053

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: timothyniels@gmail.com , 10123053@mahasiswa.itb.ac.id

Abstract— This paper presents the implementation of a game-

playing algorithm for Blokus Duo using the minimax search

algorithm enhanced with alpha-beta pruning and transposition

tables. Blokus Duo, a two-player strategy board game, offers a rich

playground for adversarial search due to its special balance of

difficulty. To evaluate game states, three heuristics are developed:

score difference, mobility (corner availability), and centralization.

These heuristics are analyzed independently, but also in

combination through a weighted sum. The results show that while

individual heuristics capture different strategic priorities at

various game stages, the combined heuristic yields a robust

intuitive human-like performance. Furthermore, optimization

techniques such as careful move ordering and memoization can

significantly reduce computation time. This work demonstrates

how classical search techniques can be effectively applied in

modern board games.

Keywords—Blokus Duo; minimax algorithm; alpha-beta

pruning; game trees; heuristic

I. INTRODUCTION

Blokus Duo is a two-player strategy-based board game now
published by Mattel which serves as a simpler variant of the
original Blokus game designed by Bernard Tavitian [2]. It is
played on a 14 × 14 grid, using one white and one white set of
21 polyomino pieces each. Players alternate playing their pieces
so that it touches at least one other piece of the same color but
only at the corners. The first placement of a piece is dictated to
be near the center of the grid. The game ends when no more valid
moves, that is, piece placements, are possible, in which case the
winner is determined to be the player with the least number of
unplaced squares remaining [1].

Fig. 1. Blokus Duo

Due to its apparent simplicity yet complex strategies,
striking a comfortable balance between tic-tac-toe and chess,
Blokus Duo is a perfect strategy game for the amateur
enthusiasts. In fact, it won the 2003 Mensa Select award and the
2004 Teacher’s Choice Award [3]. With this, Blokus Duo
becomes a particularly suitable sandbox for game strategy
exploration. In particular, not being too difficult nor easy, it
becomes the ideal domain for applying algorithmic decision-
making, as this paper aims to explore.

More specifically, this paper aims to develop a game-playing
algorithm for Blokus Duo to find optimal moves using the
minimax search algorithm. This popular decision-making
algorithm, that has been applied to numerous two-player
strategy games like tic-tac-toe or chess, provides an amazing
baseline for a Blokus Duo artificial intelligence. Moreover,
optimizing techniques such as alpha-beta pruning and
memoization will be further explored.

II. THEORY

A. Blokus Duo Rules

The Blokus Duo game consists of a 14 × 14 grid board
containing 196 squares. There are two sets of pieces for each
player: one white and one black. Each set contains 21 polyomino
pieces which includes 1 monomino, 1 domino, 2 tromino, 5
tetromino, and 12 pentomino.

The object of the game is to fit as much of the 21 pieces onto
the board as possible under certain conditions. First, each player
must place their first piece over the starting points, which are
located near the center of the grid. Next, the play continues as
each player lays down on piece at a time. Here, a new piece must
be placed at least on other piece of the same color, but only at
the corners. Thus, no flat edges of two pieces of the same color
can touch. When a player is unable to place any of their
remaining pieces, they must pass their turn. Finally, the game
ends when both players are unable lay down any more pieces.

mailto:timothyniels@gmail.com
mailto:10123053@mahasiswa.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 2. Starting Points

To determine the winner, we assign a score to each player
based on the remaining unplaced pieces. For each unplaced unit
square in the remaining pieces, a player gets -1 point. In practice,
however, one can also simply count the amount of unit squares
that has been placed on the board, which will prove to be more
convenient in translating this game to its digital version so that
an algorithm can be applied. Then, if a player places all their
pieces on the board, they earn an extra 15 points. If the last piece
to be placed on the board is the smallest piece, the monomino,
then the player also gets an extra 5 points [1].

B. Minimax Algorithm

A popular search algorithm often applied for decision-
making in two-player zero-sum games is the minimax algorithm.
The central idea of this algorithm is to simulate all possible
future moves of both players in a dynamic game tree and
evaluate the outcomes assuming each player plays optimally.
Thus, each node of the tree represents a possible state of the
game whilst each edge represents a possible move.

To determine the optimal move, as with other branch and
bound algorithms, the minimax algorithm assigns a cost or
weight to each node in the game tree. Its value is determined by
a utility function, which assesses in which player’s favor is a
game state likely for. Sometimes, the utility function is trivially
binary (win or lose) or is at least simple enough that it follows
directly from the game scoring rules. For most games, however,
the utility function must employ a certain heuristic to evaluate
the profitability of a game state. Thus, there can be liberty and
creativity in developing a minmax algorithm.

Now, unlike most branch and bound algorithms, the
minimax algorithm optimizes the utility values of each node in
a rather unique way. It simulates the existence of two actors: the
maximizer and the minimizer. When building the tree at a certain
depth, the algorithm assumes one of these two roles. As a
maximizer, it wishes to maximize the utility value by choosing
moves that increase the weight, which simulates the first-person
trying to play the optimal move. On the other hand, the
minimizer will minimize the utility value by playing the optimal
move as an opponent [5].

In practice, the minimax algorithm generates by depth-
limited depth-first search and is thus recursively implemented.
The depth limit is often called the horizon. Once the algorithm
reaches the terminal leaf node, it then evaluates the utility of

those states. From those terminal nodes, minimax would then
propagate the cost upwards, where for each level, if it is the
maximizing player’s turn, it would take the maximum value of
the children nodes, whilst if it is the minimizing player’s turn, it
would take the minimum value of the children nodes. The
following is the pseudocode for this procedure.

function minimax(node, depth, maximizingPlayer):
 if depth == 0 or isTerminal(node):
 return evaluate(node)

 if maximizingPlayer:
 maxEval = -∞
 for child in children(node):
 eval = minimax(child, depth - 1, false)
 maxEval = max(maxEval, eval)
 return maxEval
 else:
 minEval = +∞
 for child in children(node):
 eval = minimax(child, depth - 1, true)
 minEval = min(minEval, eval)
 return minEval

Fig. 3. Minimax Algorithm Pseudocode

In more mathematical terms, the min-max utility value of

each game state can be calculated as follows. The minimax

algorithm evaluates

Max(𝑠) = max
𝑎 ∈𝐴(𝑠) 

Min(Result(𝑠, 𝑎)),

during the maximizer’s turn and evaluates

Min(𝑠) = min
𝑎 ∈𝐴(𝑠) 

Max(Result(𝑠, 𝑎)),

during the minimizer’s turn. Here, Result(𝑠, 𝑎) denotes the

resulting state after applying a move a to a state s [4].

C. Alpha-Beta Pruning

For even modestly non-trivial games, the game search tree

can be very large. In fact, it grows exponentially with an

exponential runtime complexity of 𝑂(𝑏𝑑), where b is the

branching factor and d is the horizon. To deal with this, one can

employ an optimization technique called alpha-beta pruning,

which as its name suggests, prunes branches from the game tree

that does not affect the final decision.

Consider a node s and its unknown optimal utility value in

the game tree. If there already exists a better choice t further up

the tree from s, then the minimax algorithm would be inefficient

to expand node s and evaluate its utility. Hence, one can prune

the sub-tree of s. This is the core principle of the alpha-beta

pruning optimization.

To do this, the algorithm maintains two values: 𝛼 and 𝛽.

Here, 𝛼 represents the best possible score for the maximizing

player so far, while 𝛽 represents the best possible score for the

minimizing player so far. When propagating the utility values

up the tree from the terminal node, the values for 𝛼 and 𝛽 are

updated accordingly. Then, before deciding to expand a certain

node, the minimax algorithm can check first whether 𝛼 and 𝛽

is already a more optimal value so as not to expand the node. If

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

at any point 𝛼 ≥ 𝛽, then the algorithm prunes the remaining

children, which can save a lot of computation power. The

following is the pseudocode modified to implement alpha-beta

pruning [6].

function alphabeta(node, depth, 𝛼, 𝛽, maximizingPlayer):
 if depth == 0 or isTerminal(node):
 return evaluate(node)

 if maximizingPlayer:
 maxEval = -∞
 for child in children(node):
 eval = alphabeta(child, depth - 1, 𝛼, 𝛽, false)
 maxEval = max(maxEval, eval)
 𝛼 = max(𝛼, eval)
 if 𝛽 <= 𝛼:
 break
 return maxEval
 else:
 minEval = +∞
 for child in children(node):
 eval = alphabeta(child, depth - 1, 𝛼, 𝛽, true)
 minEval = min(minEval, eval)
 𝛽 = min(𝛽, eval)
 if 𝛽 <= 𝛼:
 break
 return minEval

Fig. 4. Alpha-Beta Pruning Algorithm Pseudocode

The effectiveness of alpha-beta pruning depends on the order
of node searching. In the worst case, where the nodes are
explored in the ordered of worst score, then there will be no
pruning. In the best case, the nodes are explored in the order of
best score, meaning all other children will be pruned. This yields

an average runtime complexity of 𝑂(𝑏𝑑/2), which though still

exponential, is still a massive improvement for large trees [7].

III. IMPLEMENTATION

To develop a minimax algorithm for Blokus Duo, the board
game is translated into a Next.js web application using
typescript. This is chosen to make the interaction more user-
friendly and accessible online. Due to research limitations, the
minimax algorithm will also be implemented using typescript,
despite slower performance, to make things quick and easy.

Fig. 5. Blokus Duo Application Interface

 The interface developed can be seen in the figure above. The
pieces are in trays, and users can simply drag and drop the pieces
from their corresponding trays. One can rotate pieces by left

clicking their pieces and flip them by right clicking. The code
for the UI/UX can be seen in the GitHub repository attached.

A. Heuristics

First, some heuristics are determined to calculate the utility
value (U) of a state, that is, the cost of a node in the game tree.

1. Score Difference Heuristic. This heuristic is simply the
difference between the score (S), as dictated by the
Blokus Duo rules, of the maximizing player and the
minimizing player.

𝑈1 = 𝑆max − 𝑆min

Note that in the implementation of Blokus Duo for this
project, the score counts the number of placed squares
in the board instead of unplaced squares in the
remaining pieces (which are don’t actually affect the
difference).

2. Mobility Heuristic. This heuristic counts the difference
between the number of valid corner positions between
the two different colors.

𝑈2 = 𝑀𝑚ax −𝑀𝑚in

The motivation for this heuristic is that a player would
ideally want more corners available to them than the
opponent, as this allows more opportunities to place
pieces for the player, and less opportunities for the
opponent to place pieces.

3. Centralization Heuristic. This heuristic is common in
many two-player strategy turn-based games like chess.
Most of the time, placing pieces closer to the center of
the board is more profitable, as taking central territory
can also increase mobility and is generally a more
intuitive move. So, for any cell (𝑖, 𝑗) containing the
player’s piece, we can calculate the following.

Cp = ∑ (max(𝐶𝑖 , 𝐶𝑗) − max(|𝑖 − 𝐶𝑖|, |𝑗 − 𝐶𝑗|))
(𝑖,𝑗)∈𝑃

This formula basically calculates the total difference
between the Chebyshev distance of the squares from

the center (𝐶𝑖 , 𝐶𝑗) and the center coordinates.

𝑈3  =  𝐶𝑚𝑎𝑥   −  𝐶𝑚𝑖𝑛

4. Combined Heuristic. Finally, one can combine the
three heuristics developed above into one single
heuristic. To make it customizable, one can consider
the weighted sum of the three scores.

𝑈 =∑𝑤𝑖

3

𝑖=1

𝑈𝑖

This paper will arbitrarily choose 𝑤1 = 1, 𝑤2 =
0.9,  and 𝑤3 = 0.5 as the weights. These values are
obtained simply by playing against the bot and tuning
the results accordingly.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Minimax

The minimax algorithm that is implemented in this paper

follows the pseudocode provided in theory, but with some

minor adjustments. Below is the pseudocode for the

minimax algorithm.

function minimax(
 state: GameState,
 depth: number,
 alpha: number,
 beta: number,
 isMaximizingPlayer: boolean,
 aiPlayer: 1 | 2,
 transpositionTable: TranspositionTable
): number {
 const boardKey = getBoardKey(state.board);
 const tableEntry = transpositionTable.get(boardKey);
 if (tableEntry && tableEntry.depth >= depth) {
 return tableEntry.score;
 }

 // Base case 1: reached max depth
 if (depth === 0 || state.gameOver) {
 return evaluate(state, aiPlayer);
 }

 const possibleMoves = generateMoves(state);

 // Base case 2: no more valid moves
 if (possibleMoves.length === 0) {
 return evaluate(state, aiPlayer);
 }

 const sortedMoves = possibleMoves.slice().sort((a,
b) => {
 const pieceASize =
a.piece.baseShape.reduce((total, row) => {
 const rowSum = row.reduce<number>((sum, cell)
=> sum + cell, 0);
 return total + rowSum;
 }, 0);

 const pieceBSize =
b.piece.baseShape.reduce((total, row) => {
 const rowSum = row.reduce<number>((sum, cell)
=> sum + cell, 0);
 return total + rowSum;
 }, 0);

 return pieceBSize - pieceASize;
 });

 let bestEval;
 // Maximizing player: alpha
 if (isMaximizingPlayer) {
 bestEval = -Infinity;
 for (const move of sortedMoves) {
 const childState = applyMove(state, move);
 const evalScore = minimax(
 childState,
 depth - 1,
 alpha,
 beta,
 false,
 aiPlayer,
 transpositionTable
);
 bestEval = Math.max(bestEval, evalScore);
 alpha = Math.max(alpha, evalScore);

 // Prune
 if (beta <= alpha) {
 break;
 }
 }
 }

 // Minimizing player: beta
 else {
 bestEval = Infinity;
 for (const move of sortedMoves) {
 const childState = applyMove(state, move);
 const evalScore = minimax(
 childState,
 depth - 1,
 alpha,
 beta,
 true,
 aiPlayer,
 transpositionTable
);
 bestEval = Math.min(bestEval, evalScore);
 beta = Math.min(beta, evalScore);
 // Prune
 if (beta <= alpha) {
 break;
 }
 }
 }

 transpositionTable.set(boardKey, {score: bestEval,
depth: depth});
 return bestEval;
}

Fig. 6. Minimax Algorithm for Blokus Duo

Notice that in this case, a terminal node is reached when

either the horizon depth is reached, the game is over, or

there are no more pieces left to place. Then, the recursive

implementation hints the fact that the utility values

calculated using the heuristics that has been discussed will

be propagated up the tree. Then, with the use of alpha-beta

pruning, the algorithm can smartly skip the traversal of

certain nodes whose utility values are not optimal compared

to those already searched.

export async function findBestMove(state: GameState,
depth: number): Promise<Move | null> {
 const aiPlayer = state.currentPlayer;
 let possibleMoves = generateMoves(state);

 if (possibleMoves.length === 0) {
 return null;
 }

 const transpositionTable: TranspositionTable = new
Map();

 const sortedMoves = possibleMoves.slice().sort((a,
b) => {
 const pieceASize =
a.piece.baseShape.reduce((total, row) => {
 const rowSum = row.reduce<number>((sum, cell)
=> sum + cell, 0);
 return total + rowSum;
 }, 0);

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

 const pieceBSize =
b.piece.baseShape.reduce((total, row) => {
 const rowSum = row.reduce<number>((sum, cell)
=> sum + cell, 0);
 return total + rowSum;
 }, 0);

 return pieceBSize - pieceASize;
 });

 let bestMove: Move | null = sortedMoves[0];
 let maxEval = -Infinity;

 // Iterate through every move
 for (const move of sortedMoves) {
 const childState = applyMove(state, move);
 const evalScore = minimax(
 childState,
 depth - 1,
 -Infinity,
 Infinity,
 false,
 aiPlayer,
 transpositionTable
);

 // Found better move
 if (evalScore > maxEval) {
 maxEval = evalScore;
 bestMove = move;
 }

 await new Promise((resolve) =>
setTimeout(resolve, 0));
 }

 return bestMove;
}

Fig. 7. Finding Best Move in Blokus Duo

To find the best move, however, one must iterate through the

children of the root state and then pick the state with the highest

utility value, as the minmax algorithm only returns the weight,

not the best move. This is what the findBestMove function in

the figure above achieves.

C. Optimizations

Other than alpha-beta pruning, some other optimizations

were implemented. First, recall that the order at which the nodes

in the game tree is traversed affects the capabilities of alpha-

beta pruning. A desired ordering is that the more optimal moves

are traversed first. This problem on its own requires a priority

heuristic. For this paper, the heuristic chosen is simply to order

the moves by those whose pieces have more squares, as this is

more likely to yield a greater material score.

Next, to further speed up the minmax search, transposition

tables are implemented. They serve as cache memory to store

game states that have been visited in the search earlier. The term

“transposition” here is used to denote the arrival of the same

position despite going through different sequence of moves [8].

When a unique state is traversed, the algorithm stores the

position and its optimal value in a transposition table.

Practically, this is a hash map.

IV. RESULTS AND ANALYSIS

The final developed Blokus Duo minimax algorithm using
alpha-beta pruning can be checked in the repository attached.

A. Comparing Heuristics

To test the performance of the minimax algorithm, the
different heuristics (score, mobility, centralization, and
combined) developed will be compared on different positions to
see the different moves and times taken. For ease of use, a depth
horizon of 2 will be used throughout the testing. The rationale
behind this is also the performance issue that comes with
creating the algorithm using JavaScript instead of a quickly
compiled language.

Initial State. First, the algorithm will be tested on the initial

board. Here, obviously it is white to move first. The chosen

optimal moves based on each heuristic following the position

in the figure above is summarized in the following table.

Heuristic Move Time

Score

3.6 s

Mobility

4.3 s

Centralization

3.0 s

Combination

4.3 s

Fig. 8. Initial State Results

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Midgame State. Next, a midgame state as in the following

figure is tested. It is white to move.

Fig. 9. Sample Midgame State

The chosen optimal moves based on each heuristic following

the position in the figure above is summarized in the following

table.

Heuristic Move Time

Score

6.8 s

Mobility

6.5 s

Centralization

6.4 s

Combination

6.9 s

Fig. 10. Midgame State Results

Endgame state. Finally, an endgame state as in the following
figure is tested. It is black to move.

Fig. 11. Sample Endgame State

The chosen optimal moves based on each heuristic following

the position in the figure above is summarized in the following

table.

Heuristic Move Time

Score

0 s

Mobility

0 s

Centralization

0 s

Combination

0 s

Fig. 12. Endgame State Results

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Analysis

Based on the empirical results above, each heuristic

captures a different strategic part of the game, and their

effectiveness depends too on the stage of the gameplay.

However, computational time between heuristics do not vary

much, for that depends largely on the nodes traversed, not the

accumulated time for heuristic calculations.

In the initial state, the characteristic of each heuristic

becomes most obvious. The score heuristic simply goes for the

first pentomino in the move order, the mobility heuristic goes

for the piece with the most corners, and the centralization

heuristic goes for the piece that is most diagonal. From a human

standpoint, certainly the score heuristic and centralization

heuristic results in the most intuitive decision. This is most

reflected in the combination heuristic, which after weighing in

all three opinions, chooses the same “W5” pentomino move as

the centralization heuristic.

In the midgame state, the score and mobility heuristic play

quite unintuitive moves for a human. In their attempt to either

maximize score differential or corner square potential, the

algorithm yields decisions that place larger pieces in more open

spaces. On the other hand, centralization and combination

heuristics result in a more offensive attack, as it places

pentominos near the center where black is.

In the endgame state, all four heuristics go for the “P5”

pentomino, which makes sense as with the limited space left,

going for the piece with the highest number of internal squares,

as well as allow for more corner spaces after places, is only

rational. The different placements of the “P5” piece, though, is

more a reflection of the move ordering and little space left.

Notice too that the algorithm is quick during endgames, further

showing the weight of the exponential search runtime.

Overall, this shows that the combined weighted heuristic is

the most robust across all stages of play. Even though the

weights were tuned heuristically, they provide a balanced

strategy that approximates rational human play. Moreover, the

performance benefits of alpha-beta pruning and transposition

tables are evident in keeping evaluation times manageable.

V. CONCLUSION

In this paper, a minimax algorithm using alpha-beta pruning

and transposition tables was developed to determine the best

moves in the two-player strategy-based game Blokus Duo.

Three main heuristics were explored: a score heuristic, a

mobility heuristic, and a centralization heuristic. Though in

themselves each heuristic might yield rather bizarre or

unintuitive moves, a weighted combination of them admissibly

mimics intuitive human Blokus Duo players.

For future research, it is advised to further optimize the

algorithm by using faster compiled languages such as C++ or

Rust to run the minimax search. This way, deeper horizons can

be used to create a smarter algorithm. One can also explore the

principle variation search (Negascout) paired with better move

orderings to yield more efficient algorithms.

REPOSITORY LINK (GITHUB)

https://github.com/timoruslim/blokus-duo

ACKNOWLEDGMENT

The writer would like to thank everyone who is involved and
contributed to the writing of this paper. This gratitude extends to
those who has given support and love throughout the course of
this Algorithm Strategies course. A special thanks to Dr. Nur
Ulfa Maulidevi, S.T, M.Sc. as the teaching professor of the
Algorithm Strategies class 01, who has educated all the students
and thus heavily contributed to the development of this research.

REFERENCES

[1] Mattel, "Blokus Duo Instructions," 2017. [Online]. Available:
https://www.buffalolib.org/sites/default/files/gaming-
unplugged/inst/Blokus%20Duo%20Instructions.pdf

[2] J. Glenn and E. F. Larsen, UNBORED Games: Serious Fun for Everyone.
New York, NY: Bloomsbury USA, 2014.

[3] "Winning Games," Mensa Mind Games. [Online]. Available:
https://www.mensamindgames.com/about/winning-games/

[4] "Mini-Max Algorithm in Artificial Intelligence," GeeksforGeeks.
[Online]. Available: https://www.geeksforgeeks.org/artificial-
intelligence/mini-max-algorithm-in-artificial-intelligence/

[5] E. Roberts, "The Minimax Algorithm," Stanford University, 2003.
[Online]. Available:
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-
04/intelligent-search/minimax.html

[6] E. Roberts, "Alpha-Beta Pruning," Stanford University, 2003. [Online].
Available:
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-
04/intelligent-search/alphabeta.html

[7] "Alpha Beta Pruning in AI," MyGreatLearning. [Online]. Available:
https://www.mygreatlearning.com/blog/alpha-beta-pruning-in-ai/

[8] T. A. Marsland, "The Anatomy of Chess Programs," University of
Alberta. [Online]. Available:
https://webdocs.cs.ualberta.ca/~tony/ICCA/anatomy.html

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Timothy Niels Ruslim (10123053)

https://github.com/timoruslim/blokus-duo
https://www.buffalolib.org/sites/default/files/gaming-unplugged/inst/Blokus%20Duo%20Instructions.pdf
https://www.buffalolib.org/sites/default/files/gaming-unplugged/inst/Blokus%20Duo%20Instructions.pdf
https://www.mensamindgames.com/about/winning-games/
https://www.geeksforgeeks.org/artificial-intelligence/mini-max-algorithm-in-artificial-intelligence/
https://www.geeksforgeeks.org/artificial-intelligence/mini-max-algorithm-in-artificial-intelligence/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/intelligent-search/minimax.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/intelligent-search/minimax.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/intelligent-search/alphabeta.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2003-04/intelligent-search/alphabeta.html
https://www.mygreatlearning.com/blog/alpha-beta-pruning-in-ai/
https://webdocs.cs.ualberta.ca/~tony/ICCA/anatomy.html

