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Abstract— This paper presents the implementation of a game-

playing algorithm for Blokus Duo using the minimax search 

algorithm enhanced with alpha-beta pruning and transposition 

tables. Blokus Duo, a two-player strategy board game, offers a rich 

playground for adversarial search due to its special balance of 

difficulty. To evaluate game states, three heuristics are developed: 

score difference, mobility (corner availability), and centralization. 

These heuristics are analyzed independently, but also in 

combination through a weighted sum. The results show that while 

individual heuristics capture different strategic priorities at 

various game stages, the combined heuristic yields a robust 

intuitive human-like performance. Furthermore, optimization 

techniques such as careful move ordering and memoization can 

significantly reduce computation time. This work demonstrates 

how classical search techniques can be effectively applied in 

modern board games.  

Keywords—Blokus Duo; minimax algorithm; alpha-beta 

pruning; game trees; heuristic  

I.  INTRODUCTION 

Blokus Duo is a two-player strategy-based board game now 
published by Mattel which serves as a simpler variant of the 
original Blokus game designed by Bernard Tavitian [2]. It is 
played on a 14 × 14 grid, using one white and one white set of 
21 polyomino pieces each. Players alternate playing their pieces 
so that it touches at least one other piece of the same color but 
only at the corners. The first placement of a piece is dictated to 
be near the center of the grid. The game ends when no more valid 
moves, that is, piece placements, are possible, in which case the 
winner is determined to be the player with the least number of 
unplaced squares remaining [1].  

 

Fig. 1. Blokus Duo 

Due to its apparent simplicity yet complex strategies, 
striking a comfortable balance between tic-tac-toe and chess, 
Blokus Duo is a perfect strategy game for the amateur 
enthusiasts. In fact, it won the 2003 Mensa Select award and the 
2004 Teacher’s Choice Award [3]. With this, Blokus Duo 
becomes a particularly suitable sandbox for game strategy 
exploration. In particular, not being too difficult nor easy, it 
becomes the ideal domain for applying algorithmic decision-
making, as this paper aims to explore.  

More specifically, this paper aims to develop a game-playing 
algorithm for Blokus Duo to find optimal moves using the 
minimax search algorithm. This popular decision-making 
algorithm, that has been applied to numerous two-player 
strategy games like tic-tac-toe or chess, provides an amazing 
baseline for a Blokus Duo artificial intelligence. Moreover, 
optimizing techniques such as alpha-beta pruning and 
memoization will be further explored.  

II. THEORY 

A. Blokus Duo Rules 

The Blokus Duo game consists of a 14 × 14 grid board 
containing 196 squares. There are two sets of pieces for each 
player: one white and one black. Each set contains 21 polyomino 
pieces which includes 1 monomino, 1 domino, 2 tromino, 5 
tetromino, and 12 pentomino.  

The object of the game is to fit as much of the 21 pieces onto 
the board as possible under certain conditions. First, each player 
must place their first piece over the starting points, which are 
located near the center of the grid. Next, the play continues as 
each player lays down on piece at a time. Here, a new piece must 
be placed at least on other piece of the same color, but only at 
the corners. Thus, no flat edges of two pieces of the same color 
can touch. When a player is unable to place any of their 
remaining pieces, they must pass their turn. Finally, the game 
ends when both players are unable lay down any more pieces.  
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Fig. 2. Starting Points 

To determine the winner, we assign a score to each player 
based on the remaining unplaced pieces. For each unplaced unit 
square in the remaining pieces, a player gets -1 point. In practice, 
however, one can also simply count the amount of unit squares 
that has been placed on the board, which will prove to be more 
convenient in translating this game to its digital version so that 
an algorithm can be applied. Then, if a player places all their 
pieces on the board, they earn an extra 15 points. If the last piece 
to be placed on the board is the smallest piece, the monomino, 
then the player also gets an extra 5 points [1]. 

B. Minimax Algorithm  

A popular search algorithm often applied for decision-
making in two-player zero-sum games is the minimax algorithm. 
The central idea of this algorithm is to simulate all possible 
future moves of both players in a dynamic game tree and 
evaluate the outcomes assuming each player plays optimally. 
Thus, each node of the tree represents a possible state of the 
game whilst each edge represents a possible move.  

To determine the optimal move, as with other branch and 
bound algorithms, the minimax algorithm assigns a cost or 
weight to each node in the game tree. Its value is determined by 
a utility function, which assesses in which player’s favor is a 
game state likely for. Sometimes, the utility function is trivially 
binary (win or lose) or is at least simple enough that it follows 
directly from the game scoring rules. For most games, however, 
the utility function must employ a certain heuristic to evaluate 
the profitability of a game state. Thus, there can be liberty and 
creativity in developing a minmax algorithm.  

Now, unlike most branch and bound algorithms, the 
minimax algorithm optimizes the utility values of each node in 
a rather unique way. It simulates the existence of two actors: the 
maximizer and the minimizer. When building the tree at a certain 
depth, the algorithm assumes one of these two roles. As a 
maximizer, it wishes to maximize the utility value by choosing 
moves that increase the weight, which simulates the first-person 
trying to play the optimal move. On the other hand, the 
minimizer will minimize the utility value by playing the optimal 
move as an opponent [5]. 

In practice, the minimax algorithm generates by depth-
limited depth-first search and is thus recursively implemented. 
The depth limit is often called the horizon. Once the algorithm 
reaches the terminal leaf node, it then evaluates the utility of 

those states. From those terminal nodes, minimax would then 
propagate the cost upwards, where for each level, if it is the 
maximizing player’s turn, it would take the maximum value of 
the children nodes, whilst if it is the minimizing player’s turn, it 
would take the minimum value of the children nodes. The 
following is the pseudocode for this procedure. 

function minimax(node, depth, maximizingPlayer): 
  if depth == 0 or isTerminal(node): 
      return evaluate(node) 
 
  if maximizingPlayer: 
      maxEval = -∞ 
      for child in children(node): 
          eval = minimax(child, depth - 1, false) 
          maxEval = max(maxEval, eval) 
      return maxEval 
  else: 
      minEval = +∞ 
      for child in children(node): 
          eval = minimax(child, depth - 1, true) 
          minEval = min(minEval, eval) 
      return minEval 

Fig. 3. Minimax Algorithm Pseudocode 

In more mathematical terms, the min-max utility value of 

each game state can be calculated as follows. The minimax 

algorithm evaluates 

Max(𝑠) = max
𝑎 ∈𝐴(𝑠) 

Min(Result(𝑠, 𝑎)), 

during the maximizer’s turn and evaluates 

Min(𝑠) = min
𝑎 ∈𝐴(𝑠) 

Max(Result(𝑠, 𝑎)), 

during the minimizer’s turn. Here, Result(𝑠, 𝑎) denotes the 

resulting state after applying a move a to a state s [4]. 

 

C. Alpha-Beta Pruning  

For even modestly non-trivial games, the game search tree 

can be very large. In fact, it grows exponentially with an 

exponential runtime complexity of 𝑂(𝑏𝑑), where b is the 

branching factor and d is the horizon. To deal with this, one can 

employ an optimization technique called alpha-beta pruning, 

which as its name suggests, prunes branches from the game tree 

that does not affect the final decision.  

Consider a node s and its unknown optimal utility value in 

the game tree. If there already exists a better choice t further up 

the tree from s, then the minimax algorithm would be inefficient 

to expand node s and evaluate its utility. Hence, one can prune 

the sub-tree of s. This is the core principle of the alpha-beta 

pruning optimization.  

To do this, the algorithm maintains two values: 𝛼 and 𝛽. 

Here, 𝛼 represents the best possible score for the maximizing 

player so far, while 𝛽 represents the best possible score for the 

minimizing player so far. When propagating the utility values 

up the tree from the terminal node, the values for 𝛼 and 𝛽 are 

updated accordingly. Then, before deciding to expand a certain 

node, the minimax algorithm can check first whether 𝛼 and 𝛽 

is already a more optimal value so as not to expand the node. If 
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at any point  𝛼 ≥ 𝛽, then the algorithm prunes the remaining 

children, which can save a lot of computation power. The 

following is the pseudocode modified to implement alpha-beta 

pruning [6].  

function alphabeta(node, depth, 𝛼, 𝛽, maximizingPlayer): 
  if depth == 0 or isTerminal(node): 
      return evaluate(node) 
 
  if maximizingPlayer: 
      maxEval = -∞ 
      for child in children(node): 
          eval = alphabeta(child, depth - 1, 𝛼, 𝛽, false) 
          maxEval = max(maxEval, eval) 
          𝛼 = max(𝛼, eval) 
          if 𝛽 <= 𝛼: 
              break   
      return maxEval 
  else: 
      minEval = +∞ 
      for child in children(node): 
          eval = alphabeta(child, depth - 1, 𝛼, 𝛽, true) 
          minEval = min(minEval, eval) 
          𝛽 = min(𝛽, eval) 
          if 𝛽 <= 𝛼: 
              break 
      return minEval 

Fig. 4. Alpha-Beta Pruning Algorithm Pseudocode 

The effectiveness of alpha-beta pruning depends on the order 
of node searching. In the worst case, where the nodes are 
explored in the ordered of worst score, then there will be no 
pruning. In the best case, the nodes are explored in the order of 
best score, meaning all other children will be pruned. This yields 

an average runtime complexity of 𝑂(𝑏𝑑/2), which though still 

exponential, is still a massive improvement for large trees [7].  

III. IMPLEMENTATION 

To develop a minimax algorithm for Blokus Duo, the board 
game is translated into a Next.js web application using 
typescript. This is chosen to make the interaction more user-
friendly and accessible online. Due to research limitations, the 
minimax algorithm will also be implemented using typescript, 
despite slower performance, to make things quick and easy.  

 

Fig. 5. Blokus Duo Application Interface 

 The interface developed can be seen in the figure above. The 
pieces are in trays, and users can simply drag and drop the pieces 
from their corresponding trays. One can rotate pieces by left 

clicking their pieces and flip them by right clicking. The code 
for the UI/UX can be seen in the GitHub repository attached.   

A. Heuristics 

First, some heuristics are determined to calculate the utility 
value (U) of a state, that is, the cost of a node in the game tree.  

1. Score Difference Heuristic. This heuristic is simply the 
difference between the score (S), as dictated by the 
Blokus Duo rules, of the maximizing player and the 
minimizing player.  

𝑈1 = 𝑆max − 𝑆min 

Note that in the implementation of Blokus Duo for this 
project, the score counts the number of placed squares 
in the board instead of unplaced squares in the 
remaining pieces (which are don’t actually affect the 
difference).  

2. Mobility Heuristic. This heuristic counts the difference 
between the number of valid corner positions between 
the two different colors.  

𝑈2 = 𝑀𝑚ax −𝑀𝑚in 

The motivation for this heuristic is that a player would 
ideally want more corners available to them than the 
opponent, as this allows more opportunities to place 
pieces for the player, and less opportunities for the 
opponent to place pieces.  

3. Centralization Heuristic. This heuristic is common in 
many two-player strategy turn-based games like chess. 
Most of the time, placing pieces closer to the center of 
the board is more profitable, as taking central territory 
can also increase mobility and is generally a more 
intuitive move. So, for any cell (𝑖, 𝑗) containing the 
player’s piece, we can calculate the following. 

Cp = ∑ (max(𝐶𝑖 , 𝐶𝑗) − max(|𝑖 − 𝐶𝑖|, |𝑗 − 𝐶𝑗|))
(𝑖,𝑗)∈𝑃

 

This formula basically calculates the total difference 
between the Chebyshev distance of the squares from 

the center (𝐶𝑖 , 𝐶𝑗) and the center coordinates.  

𝑈3  =  𝐶𝑚𝑎𝑥   −  𝐶𝑚𝑖𝑛 

4. Combined Heuristic. Finally, one can combine the 
three heuristics developed above into one single 
heuristic. To make it customizable, one can consider 
the weighted sum of the three scores. 

𝑈 =∑𝑤𝑖

3

𝑖=1

𝑈𝑖  

This paper will arbitrarily choose 𝑤1 = 1, 𝑤2 =
0.9,  and 𝑤3 = 0.5 as the weights. These values are 
obtained simply by playing against the bot and tuning 
the results accordingly.  
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B. Minimax 

The minimax algorithm that is implemented in this paper 

follows the pseudocode provided in theory, but with some 

minor adjustments. Below is the pseudocode for the 

minimax algorithm.  

function minimax( 
 state: GameState, 
 depth: number, 
 alpha: number, 
 beta: number, 
 isMaximizingPlayer: boolean, 
 aiPlayer: 1 | 2, 
 transpositionTable: TranspositionTable 
): number { 
 const boardKey = getBoardKey(state.board); 
 const tableEntry = transpositionTable.get(boardKey); 
 if (tableEntry && tableEntry.depth >= depth) { 
    return tableEntry.score; 
 } 
 
 // Base case 1: reached max depth 
 if (depth === 0 || state.gameOver) { 
    return evaluate(state, aiPlayer); 
 } 
 
 const possibleMoves = generateMoves(state); 
 
 // Base case 2: no more valid moves 
 if (possibleMoves.length === 0) { 
    return evaluate(state, aiPlayer); 
 } 
 
 const sortedMoves = possibleMoves.slice().sort((a, 
b) => { 
    const pieceASize = 
a.piece.baseShape.reduce((total, row) => { 
       const rowSum = row.reduce<number>((sum, cell) 
=> sum + cell, 0); 
       return total + rowSum; 
      }, 0); 
 
    const pieceBSize = 
b.piece.baseShape.reduce((total, row) => { 
       const rowSum = row.reduce<number>((sum, cell) 
=> sum + cell, 0); 
       return total + rowSum; 
      }, 0); 
 
    return pieceBSize - pieceASize; 
 }); 
 
 let bestEval; 
 // Maximizing player: alpha 
 if (isMaximizingPlayer) { 
    bestEval = -Infinity; 
    for (const move of sortedMoves) { 
       const childState = applyMove(state, move); 
       const evalScore = minimax( 
          childState, 
          depth - 1, 
          alpha, 
          beta, 
          false, 
          aiPlayer, 
          transpositionTable 
       ); 
       bestEval = Math.max(bestEval, evalScore); 
       alpha = Math.max(alpha, evalScore); 

       // Prune 
       if (beta <= alpha) { 
          break; 
       } 
    } 
 } 
 
 // Minimizing player: beta 
 else { 
    bestEval = Infinity; 
    for (const move of sortedMoves) { 
       const childState = applyMove(state, move); 
       const evalScore = minimax( 
          childState, 
          depth - 1, 
          alpha, 
          beta, 
          true, 
          aiPlayer, 
          transpositionTable 
       ); 
       bestEval = Math.min(bestEval, evalScore); 
       beta = Math.min(beta, evalScore); 
       // Prune 
       if (beta <= alpha) { 
          break; 
       } 
    } 
 } 
 
 transpositionTable.set(boardKey, {score: bestEval, 
depth: depth}); 
 return bestEval; 
} 

Fig. 6. Minimax Algorithm for Blokus Duo 

Notice that in this case, a terminal node is reached when 

either the horizon depth is reached, the game is over, or 

there are no more pieces left to place. Then, the recursive 

implementation hints the fact that the utility values 

calculated using the heuristics that has been discussed will 

be propagated up the tree. Then, with the use of alpha-beta 

pruning, the algorithm can smartly skip the traversal of 

certain nodes whose utility values are not optimal compared 

to those already searched.  

export async function findBestMove(state: GameState, 
depth: number): Promise<Move | null> { 
   const aiPlayer = state.currentPlayer; 
   let possibleMoves = generateMoves(state); 
 
   if (possibleMoves.length === 0) { 
      return null; 
   } 
 
   const transpositionTable: TranspositionTable = new 
Map(); 
 
   const sortedMoves = possibleMoves.slice().sort((a, 
b) => { 
     const pieceASize = 
a.piece.baseShape.reduce((total, row) => { 
       const rowSum = row.reduce<number>((sum, cell) 
=> sum + cell, 0); 
       return total + rowSum; 
      }, 0); 
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     const pieceBSize = 
b.piece.baseShape.reduce((total, row) => { 
       const rowSum = row.reduce<number>((sum, cell) 
=> sum + cell, 0); 
       return total + rowSum; 
      }, 0); 
 
     return pieceBSize - pieceASize; 
  }); 
 
  let bestMove: Move | null = sortedMoves[0]; 
  let maxEval = -Infinity; 
 
  // Iterate through every move 
  for (const move of sortedMoves) { 
     const childState = applyMove(state, move); 
     const evalScore = minimax( 
        childState, 
        depth - 1, 
        -Infinity, 
        Infinity, 
        false, 
        aiPlayer, 
        transpositionTable 
     ); 
 
     // Found better move 
     if (evalScore > maxEval) { 
        maxEval = evalScore; 
        bestMove = move; 
     } 
 
     await new Promise((resolve) => 
setTimeout(resolve, 0)); 
   } 
 
   return bestMove; 
} 

Fig. 7. Finding Best Move in Blokus Duo 

To find the best move, however, one must iterate through the 

children of the root state and then pick the state with the highest 

utility value, as the minmax algorithm only returns the weight, 

not the best move. This is what the findBestMove function in 

the figure above achieves.  

C. Optimizations 

Other than alpha-beta pruning, some other optimizations 

were implemented. First, recall that the order at which the nodes 

in the game tree is traversed affects the capabilities of alpha-

beta pruning. A desired ordering is that the more optimal moves 

are traversed first. This problem on its own requires a priority 

heuristic. For this paper, the heuristic chosen is simply to order 

the moves by those whose pieces have more squares, as this is 

more likely to yield a greater material score.  

Next, to further speed up the minmax search, transposition 

tables are implemented. They serve as cache memory to store 

game states that have been visited in the search earlier. The term 

“transposition” here is used to denote the arrival of the same 

position despite going through different sequence of moves [8]. 

When a unique state is traversed, the algorithm stores the 

position and its optimal value in a transposition table. 

Practically, this is a hash map.   

IV. RESULTS AND ANALYSIS 

The final developed Blokus Duo minimax algorithm using 
alpha-beta pruning can be checked in the repository attached.  

A. Comparing Heuristics 

To test the performance of the minimax algorithm, the 
different heuristics (score, mobility, centralization, and 
combined) developed will be compared on different positions to 
see the different moves and times taken. For ease of use, a depth 
horizon of 2 will be used throughout the testing. The rationale 
behind this is also the performance issue that comes with 
creating the algorithm using JavaScript instead of a quickly 
compiled language.  

Initial State. First, the algorithm will be tested on the initial 

board. Here, obviously it is white to move first. The chosen 

optimal moves based on each heuristic following the position 

in the figure above is summarized in the following table.  

Heuristic Move Time 

Score 

 

3.6 s 

Mobility 

 

4.3 s 

Centralization 

 

3.0 s 

Combination 

 

4.3 s 

Fig. 8. Initial State Results 
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Midgame State. Next, a midgame state as in the following 

figure is tested. It is white to move.  

 

 

Fig. 9. Sample Midgame State 

The chosen optimal moves based on each heuristic following 

the position in the figure above is summarized in the following 

table.  

 

Heuristic Move Time 

Score 

 

6.8 s 

Mobility 

 

6.5 s 

Centralization 

 

6.4 s 

Combination 

 

6.9 s 

Fig. 10. Midgame State Results 

Endgame state. Finally, an endgame state as in the following 
figure is tested. It is black to move.  

 

Fig. 11. Sample Endgame State 

The chosen optimal moves based on each heuristic following 

the position in the figure above is summarized in the following 

table.  

Heuristic Move Time 

Score 

 

0 s 

Mobility 

 

0 s 

Centralization 

 

0 s 

Combination 

 

0 s 

Fig. 12. Endgame State Results 
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B. Analysis 

Based on the empirical results above, each heuristic 

captures a different strategic part of the game, and their 

effectiveness depends too on the stage of the gameplay. 

However, computational time between heuristics do not vary 

much, for that depends largely on the nodes traversed, not the 

accumulated time for heuristic calculations.  

In the initial state, the characteristic of each heuristic 

becomes most obvious. The score heuristic simply goes for the 

first pentomino in the move order, the mobility heuristic goes 

for the piece with the most corners, and the centralization 

heuristic goes for the piece that is most diagonal. From a human 

standpoint, certainly the score heuristic and centralization 

heuristic results in the most intuitive decision. This is most 

reflected in the combination heuristic, which after weighing in 

all three opinions, chooses the same “W5” pentomino move as 

the centralization heuristic.  

In the midgame state, the score and mobility heuristic play 

quite unintuitive moves for a human. In their attempt to either 

maximize score differential or corner square potential, the 

algorithm yields decisions that place larger pieces in more open 

spaces. On the other hand, centralization and combination 

heuristics result in a more offensive attack, as it places 

pentominos near the center where black is.  

In the endgame state, all four heuristics go for the “P5” 

pentomino, which makes sense as with the limited space left, 

going for the piece with the highest number of internal squares, 

as well as allow for more corner spaces after places, is only 

rational. The different placements of the “P5” piece, though, is 

more a reflection of the move ordering and little space left. 

Notice too that the algorithm is quick during endgames, further 

showing the weight of the exponential search runtime.  

Overall, this shows that the combined weighted heuristic is 

the most robust across all stages of play. Even though the 

weights were tuned heuristically, they provide a balanced 

strategy that approximates rational human play. Moreover, the 

performance benefits of alpha-beta pruning and transposition 

tables are evident in keeping evaluation times manageable.  

V. CONCLUSION 

In this paper, a minimax algorithm using alpha-beta pruning 

and transposition tables was developed to determine the best 

moves in the two-player strategy-based game Blokus Duo. 

Three main heuristics were explored: a score heuristic, a 

mobility heuristic, and a centralization heuristic. Though in 

themselves each heuristic might yield rather bizarre or 

unintuitive moves, a weighted combination of them admissibly 

mimics intuitive human Blokus Duo players.  

For future research, it is advised to further optimize the 

algorithm by using faster compiled languages such as C++ or 

Rust to run the minimax search. This way, deeper horizons can 

be used to create a smarter algorithm. One can also explore the 

principle variation search (Negascout) paired with better move 

orderings to yield more efficient algorithms.   

REPOSITORY LINK (GITHUB) 

https://github.com/timoruslim/blokus-duo 
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